195 research outputs found

    Adapting Web Services for Multiple Devices: a Model-Driven, Aspect-Oriented Approach

    Get PDF
    Mobile devices have become an essential element in our daily lives, even for connecting to the Internet. Web Services have become extremely important when offering services through the Internet. However, current Web Services are very inflexible as regards their invocation from different types of device, especially if we consider the need for them to be adaptable when being invoked from a mobile device. In this paper, we will propose several alternatives for the creation of flexible web services which can be invoked from different types of device, and compare the different proposed approaches. Aspect -Oriented Programming and Model-Driven Development have been used in all proposals to reduce the impact of service adaption, not only for the service developer, but also to maintain the correct code structure. This work has been developed thanks to the support of MEC (contract TIN2008-02985)

    A microservice architecture for real-time IoT data processing: A reusable Web of things approach for smart ports

    Get PDF
    Major advances in telecommunications and the Internet of Things have given rise to numerous smart city scenarios in which smart services are provided. What was once a dream for the future has now become reality. However, the need to provide these smart services quickly, efficiently, in an interoperable manner and in real time is a cutting-edge technological challenge. Although some software architectures offer solutions in this area, these are often limited in terms of reusability and maintenance by independent modules —involving the need for system downtime when maintaining or evolving, as well as by a lack of standards in terms of the interoperability of their interface. In this paper, we propose a fully reusable microservice architecture, standardized through the use of the Web of things paradigm, and with high efficiency in real-time data processing, supported by complex event processing techniques. To illustrate the proposal, we present a fully reusable implementation of the microservices necessary for the deployment of the architecture in the field of air quality monitoring and alerting in smart ports. The performance evaluation of this architecture shows excellent results

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent

    Get PDF

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Searching for neutrino transients below 1 TeV with IceCube

    Get PDF

    Hybrid cosmic ray measurements using the IceAct telescopes in coincidence with the IceCube and IceTop detectors

    Get PDF
    IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon photomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, including the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array

    Searching for High-Energy Neutrinos from Core-Collapse Supernovae with IceCube

    Get PDF
    corecore